Methodological design of a performance measurement system for the colombian shipyard supply chain

Juan M Cogollo Flórez, Martín D Arango Serna, Jorge I Gómez Bejarano, Sandra M Puello Ruiz


The design of a performance measurement system for the Colombian shipyard supply chain is shown in this paper, using a model that integrates the principles of the Balanced Scorecard with the fuzzy sets theory to treat uncertainty associated with selected logistics indicators, enabling better supply chain management.


indicator; performance measurement; supply chain; fuzzy logic; balanced scorecard; shipyard

Full Text:



ABDUL, A. and NABI, M. The need for a new product development framework for engineerto- order products. European Journal of Innovation Management, 6 (3): 182-196, 2003

AMMAR, S. and WRIGHT, R. Applying fuzzyset theory to performance evaluation. Socio- Economic Planning Sciences, 34: 285 -302, 2000.

BALLOU, R., GILBERT, S. and MUKHERJEE, A. New Managerial Challenges from Supply Chain Opportunities. Industrial Marketing Management, 29: 7-18, 2000.

BEAMON, B. and CHEN, V. Performance analysis of conjoined supply chains. International Journal of Production Research, 39 (14): 3195- 3218, 2001.

CAPÓ-VICEDO, J., TOMÁS-MIQUEL, J. and EXPÓSITO-LANGA, M. La gestión del conocimiento en la cadena de suministro: Análisis de la influencia del contexto organizativo. Información Tecnológica, 18(1): 127-135, 2007.

GOSLING, J. and NAIM, M. Engineer-to-order supply chain management: a literature review and research agenda. International Journal of Production Economics, 122: 741-754, 2009.

KANDA, A. and DESHMUKH, S.G. Coordination in supply chains: an evaluation using fuzzy logic. Production Planning & Control, 18 (5): 420-435, 2007.

KAUFMANN, A. and GIL, J. Introducción de la teoría de los subconjuntos borrosos a la gestión de las empresas. 3 ed. Santiago de Compostela: Milladoiro, 1993. 252 P.

KLIR, G. and YUAN, B. Fuzzy Sets and Fuzzy Logic: Theory and Application. New Jersey: Prentice Hall, 1995.

LANCIONI, R. New Developments in Supply Chain Management for the Millennium. Industrial Marketing Management, 29: 1-6, 2000.

LAU, H., PANG, W. and WONG, C. Methodology for monitoring supply chain performance: a fuzzy logic approach. Logistics Information Management, 15 (4): 271 - 280, 2002.

LEHTINEN, J. and AHOLA, T. Is performance measurement suitable for an extended enterprise?. International Journal of Operations & Production Management, 30 (2): 181-204, 2010.

MAMDANI, E.H. and ASSILIAN, S. An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man- Machine Studies, 7(1): 1-13, 1975.

LING, CH., CHIU, H. and TSENG, Y. Agility evaluation using fuzzy logic. International Journal of Production Economics, 101: 353 - 368, 2006.

OHDAR, R. and KUMAR, P. Performance measurement and evaluation of suppliers in supply chain: an evolutionary fuzzy-based approach. Journal of Manufacturing Technology Management, 15 (8): 723 - 734, 2004.

OLHAGER, J. Strategic positioning of the order penetration point. International Journal of Production Economics, 85 (3): 319-329, 2003.

SILVA, C., SOUSA, J. and RUNKLER, T. Optimization of logistic systems using fuzzy weighted aggregation. Fuzzy Sets and Systems, 158: 1947 - 1960, 2007.

SUGENO, M. and TAKAGI, T. Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Syst. Man and Cybern., 15: 116-132, 1985.

WANG, W. A fuzzy linguistic computing approach to supplier evaluation. Applied Mathematical Modeling, 34: 3130 - 3141, 2010.

ZADEH, L. Fuzzy Sets and their applications to cognitive and decision processes. London: Academic Press, 1975.

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Copyright (c) 2012 Ciencia y tecnología de buques

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 1909-8642 (Impreso)

ISSN: 2619-645X (Online)

Revista en OJS implementada por Biteca Ltda.