Methodological design of a performance measurement system for the colombian shipyard supply chain

  • Juan M Cogollo Flórez Universidad Nacional de Colombia, Facultad de Minas, Escuela de Ingeniería de la Organización. Medellín, Colombia.
  • Martín D Arango Serna Universidad Nacional de Colombia, Facultad de Minas, Escuela de Ingeniería de la Organización. Medellín, Colombia.
  • Jorge I Gómez Bejarano COTECMAR. Dirección Financiera y Administrativa. Cartagena, Colombia.
  • Sandra M Puello Ruiz COTECMAR. División de Gestión Logística. Cartagena, Colombia.

Abstract

The design of a performance measurement system for the Colombian shipyard supply chain is shown in this paper, using a model that integrates the principles of the Balanced Scorecard with the fuzzy sets theory to treat uncertainty associated with selected logistics indicators, enabling better supply chain management.

References

ABDUL, A. and NABI, M. The need for a new product development framework for engineerto- order products. European Journal of Innovation Management, 6 (3): 182-196, 2003

AMMAR, S. and WRIGHT, R. Applying fuzzyset theory to performance evaluation. Socio- Economic Planning Sciences, 34: 285 -302, 2000.

BALLOU, R., GILBERT, S. and MUKHERJEE, A. New Managerial Challenges from Supply Chain Opportunities. Industrial Marketing Management, 29: 7-18, 2000.

BEAMON, B. and CHEN, V. Performance analysis of conjoined supply chains. International Journal of Production Research, 39 (14): 3195- 3218, 2001.

CAPÓ-VICEDO, J., TOMÁS-MIQUEL, J. and EXPÓSITO-LANGA, M. La gestión del conocimiento en la cadena de suministro: Análisis de la influencia del contexto organizativo. Información Tecnológica, 18(1): 127-135, 2007.

GOSLING, J. and NAIM, M. Engineer-to-order supply chain management: a literature review and research agenda. International Journal of Production Economics, 122: 741-754, 2009.

KANDA, A. and DESHMUKH, S.G. Coordination in supply chains: an evaluation using fuzzy logic. Production Planning & Control, 18 (5): 420-435, 2007.

KAUFMANN, A. and GIL, J. Introducción de la teoría de los subconjuntos borrosos a la gestión de las empresas. 3 ed. Santiago de Compostela: Milladoiro, 1993. 252 P.

KLIR, G. and YUAN, B. Fuzzy Sets and Fuzzy Logic: Theory and Application. New Jersey: Prentice Hall, 1995.

LANCIONI, R. New Developments in Supply Chain Management for the Millennium. Industrial Marketing Management, 29: 1-6, 2000.

LAU, H., PANG, W. and WONG, C. Methodology for monitoring supply chain performance: a fuzzy logic approach. Logistics Information Management, 15 (4): 271 - 280, 2002.

LEHTINEN, J. and AHOLA, T. Is performance measurement suitable for an extended enterprise?. International Journal of Operations & Production Management, 30 (2): 181-204, 2010.

MAMDANI, E.H. and ASSILIAN, S. An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man- Machine Studies, 7(1): 1-13, 1975.

LING, CH., CHIU, H. and TSENG, Y. Agility evaluation using fuzzy logic. International Journal of Production Economics, 101: 353 - 368, 2006.

OHDAR, R. and KUMAR, P. Performance measurement and evaluation of suppliers in supply chain: an evolutionary fuzzy-based approach. Journal of Manufacturing Technology Management, 15 (8): 723 - 734, 2004.

OLHAGER, J. Strategic positioning of the order penetration point. International Journal of Production Economics, 85 (3): 319-329, 2003.

SILVA, C., SOUSA, J. and RUNKLER, T. Optimization of logistic systems using fuzzy weighted aggregation. Fuzzy Sets and Systems, 158: 1947 - 1960, 2007.

SUGENO, M. and TAKAGI, T. Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Syst. Man and Cybern., 15: 116-132, 1985.

WANG, W. A fuzzy linguistic computing approach to supplier evaluation. Applied Mathematical Modeling, 34: 3130 - 3141, 2010.

ZADEH, L. Fuzzy Sets and their applications to cognitive and decision processes. London: Academic Press, 1975.

Published
2012-01-09
Section
Scientific and Technological Research Articles