Passenger submarine concept design for oil production offshore systems

  • Thiago Lobão de Almeida Universidade de São Paulo. Brazil.
  • Victor Coracini Tonacio Universidade de São Paulo. Brazil.

Abstract

The paper proposes an innovative solution to transport workers of offshore oil production platforms from the coast to their units, which operate at the Pre-Salt exploration, 300 km from the coast. A passenger submarine concept design was developed, justified by the range of practical obstacles observed in the current modes of transportation, helicopters and supply boats. Requirements like operational depth (100 m), passenger capacity (250 people), and cruising speed (minimum 13.4 knots) are defined, based on estimates. Firstly, it seeks the adoption of air-independent propulsion (AIP) systems, by fuel cells (PEMFC). However, the work progress leads to an entire electric propulsion system. The internal arrangement is elaborated, regarding passenger comfort, structural constraints, allocation of batteries and ballast tanks. Then, after a hydrodynamic hull optimization, by Computational Fluid Dynamics analysis, we provide a final configuration with 100-m length and 9.7-m diameter, operational speed of 16 kt, and autonomy of 26 hours.

References

ABS (American Bureau of Shipping). Rules for building and classing underwater vehicles, systems and hyberbaric facilities. 2010.

ADAMS, V. W. Possible fuel cell applications for ships and submarines. Journal of Power Resources. 1990. Vol 29. PP. 181-192.

GABLER, U. Submarine Design. 1ª ed. São Paulo. AMRJ/ETCN. 1991.

JACKSON, H. A. Fundamentals of Submarine Concept Design. SNAME Transactions. 1992. Vol 100. pp. 419-448.

NEWMAN, J. N. Marine Hydrodynamics. The Massachusetts Institute of Technology. 1977.

PRINS, C. A., EVERARD B., Approaches to submarine design in a changing environment. INEC. 1996. Paper 3.

Published
2011-01-24
How to Cite
Lobão de Almeida, T., & Coracini Tonacio, V. (2011). Passenger submarine concept design for oil production offshore systems. Ciencia Y tecnología De Buques, 4(8), 9-23. https://doi.org/10.25043/19098642.42
Section
Scientific and Technological Research Articles