Diseño de una hélice supercavitante

Authors

  • Fabián A. Osorio Departamento de Ingeniería Mecánica de la Universidad del Norte, Barranquilla
  • Antonio J. Bula Departamento de Ingeniería Mecánica de la Universidad del Norte, Barranquilla
  • Néstor N. Durango Departamento de Ingeniería Mecánica de la Universidad del Norte, Barranquilla

Keywords:

cavitation, computational shaping, cavitator

Abstract

For the design of the propeller of super-cavitations, we proceeded according to the proposal developed by Kudo et al. (2001), which was to stimulate the cavitations by making a groove on the side of the blade with the lowest pressure. To establish the location of the groove or cavitator and achieve the predetermined objective, computational simulations were carried out of the pressure distribution in the hydro-dynamic profiles along the blade. Once the zone was identified, two propellers were built, a conventional one and another with grooves for its later testing which would allow us to know the difference in behavior between them. The tests proved that the propeller with grooves presented an increase in efficiency, and therefore, in the thrust speed, with a noticeable shifting of the maximum efficiency towards higher angular velocities than those of the design.

Downloads

Download data is not yet available.

References

Amromin, E. y Mizine, I. (2003, 1-4 de noviembre). “Partial Cavitation as Drag Reduction. Technique and Problem of Active Flow Control”. CAV2003, [simposio] Fifth International Symposium on Cavitation, Osaka.

Anderson, J. (1984) Fundamentals of Aerodynamics, New York, McGraw-Hill, pp. 247 – 314.

Batchelor, G. K. (2001) An Introduction to Fluid Dynamics. Cambridge, (s. e.), pp. 55, 481-506.

Berntsen, G., (2001 20-23 de junio). “Numerical Modeling of Sheet and Tip Vortex Cavitation With Fluent 5”. CAV 2001, [simposio] Fourth International Symposium on Cavitation, Pasadena.

Carey, V. P., (1992). Liquid–Vapor Phase–Change Pheno- mena, Bristol, Taylor & Francis, pp. 35, cap. 2.

Fuchslocher, S. (1964) Bombas. Madrid, Labor S. A., pp. 89 – 112.

Kinnas, S. (s. d.) “Photographs of Different Types of Cavitation”, [en línea], disponible en: http://cavity. ce.utexas.edu/kinnas/cavphotos.html, recuperado el 4 de octubre de 2005.

Kudo, T., Ukon, Y., y Sumino, Y. (2001, 20-23 de junio) “Proposal of a Groove Cavitator on a Supercavitation Propeller”, [simposio] Fourth International Symposium on Cavitation, CAV 2001, Pasadena.

Goel, A. (2002) Control Strategies for Supercavitating Vehicles, [tesis de maestría], Florida, University of Florida, Mechanical and Aerospace Engineering Department.

Houghton, E., Carpenter, P., (2003) Aerodynamics for Engineering Students, Oxford, Butterworth- Heinemann, pp. 200-209.

Senocak,I.,(2002,s.d.).“ComputationalMethodology for the Simulation of TurbulentCavitating Flows”. [conferencia], University of Florida, Florida.

Somers, D. M. (2005) “Effects of Airfoil Thickness and Maximum Lift Coefficient on Roughness Sensiti- vity”. Contrato DE-AC36-99-GO 10337. National Renewable Energy Laboratory, Pennsylvania State University.

How to Cite

Osorio, F. A., Bula, A. J., & Durango, N. N. (2007). Diseño de una hélice supercavitante. Ciencia Y tecnología De Buques, 1(1), 7–15. Retrieved from https://shipjournal.co/index.php/sst/article/view/2

Issue

Section

Scientific and Technological Research Articles
QR Code