Anti-fouling Paints Based on Extracts of Marine Organisms from The Colombian Caribbean

  • C. Puentes
  • K. Carreño
  • M. Santos-Acevedo
  • J. Gómez-León
  • M. García
  • M. Pérez
  • M. Stupak
  • G. Blustein


Habitually, control of biological fouling includes application of paints containing toxic substances that end upcontaminating marine ecosystem. Many organisms prevent settlement of other species synthesizing secondarymetabolites that could be used in the elaboration of environmentally friendly anti-fouling paints. This work evaluated the behavior of anti-fouling paints based on extracts from marine invertebrates in the ColombianCaribbean: Agelas tubulata, Myrmekioderma gyroderma, Oceanapia peltata, Aplysina lacunosa, Neopetrosia próxima,and Holothuria glaberrima. The painted panels were submerged in the port of Mar del Plata (Argentina); after 90 days in the sea signi!cant differences were registered in the total coverage between the painted panels andthe controls (p<0.05). The results obtained represent important progress toward using natural compounds incontrolling encrustations.

Author Biographies

C. Puentes
Tesista. Instituto de Investigaciones Marinas y Costeras (INVEMAR). Santa Marta - Colombia
K. Carreño
Tesista. Instituto de Investigaciones Marinas y Costeras (INVEMAR). Santa Marta - Colombia
M. Santos-Acevedo
Investigador. Instituto de Investigaciones Marinas y Costeras (INVEMAR). Santa Marta - Colombia
J. Gómez-León
Investigador. Instituto de Investigaciones Marinas y Costeras (INVEMAR). Santa Marta - Colombia
M. García
Profesional CICPBA. Centro de Investigación y Desarrollo en Tecnología de Pinturas (CIDEPINT). La Plata - Argentina
M. Pérez
Profesional CONICET. Centro de Investigación y Desarrollo en Tecnología de Pinturas (CIDEPINT). La Plata - Argentina; Universidad Nacional de La Plata.La Plata - Argentina
M. Stupak
Profesional CONICET. Centro de Investigación y Desarrollo en Tecnología de Pinturas (CIDEPINT). La Plata - Argentina
G. Blustein
Investigador CONICET. Centro de Investigación y Desarrollo en Tecnología de Pinturas (CIDEPINT). La Plata - Argentina; Profesor. Universidad Nacionalde La Plata. La Plata - Argentina


ABARZUA, S. and S. JAKUBOWSKI. 1995. Biotechnological investigation for the prevention of biofouling: I. Biological and biochemical principles for the prevention of biofouling. Mar. Ecol. Prog. Ser. 123: 301-312 pp.

ALCOLADO, P.M. 1984. Nuevas especies de esponjas encontradas en Cuba. Poeyana. 271: 1–22 pp.

BECERRO, M.; THACKER, R.; TURON, X.; URIZ, M. AND PAUL, V. (2003). Biogeography of sponge chemical ecology: comparison of tropical and temperate defences. Oecologia, 135, 91-101.

BELLAS, J. 2005, Toxicity assessment of the antifouling compound zinc pyrithione using early developmental stages of the ascidian Ciona intestinalis. Biofouling. 21: 289-296 pp.

BERGQUIST, P.R. AND S.D.C. COOK. 2002. Family Aplysinidae, en: Hooper, J.N.A. y

R.W.M. van Soest (eds.). Systema Porifera: a guide to the classi!cation of sponges. Kluwer Academic/Plenum Publishers, New York. 1082–1085 pp.

BETTIN, C., J. OEHLMANN and E. STROBEN. 1996. TBT-induced imposex in marine neogastropods is mediated by an increasing androgen level. Helgoland Mar. Res. 50 (3): 299–317 pp.

BLUNT, J.; COPP, B.; MUNRO, M.; NORTHCOTE, P. and PRINSEP, M. (2004). Marine natural products. Nat. Prod. Rep. 21, 1- 49.

BLUNT, J.W., B.R. COPP, W.P. HU, M. MUNRO, P.T. NORTHCOTE and M.R Prinsep. 2008. Marine natural products. Natural Products Report. 25: 35-94 pp.

BRYAN, P.; MCCLINTOCK, J.;MARION, K.; WATTS, S. and HOPKINS, T. (1992). Feeding deterrence and chemical defense

in echinoderm body wall tissues from the Northern gulf of Mexico. Amer. Zool,, 32, 100.

BRYAN, P.; RITTSCHOF, D. and MC CLINTOCK, J. (1996). Bioactivity of echinoderm ethanolic body-wall extracts: An

assessment of marine bacterial attachment and macorinverebrate larval settlement. J. Exp. Mar. Biol. Ecol., 196, 79-96.

CALLOW, M.E. and J.A. CALLOW. 2003. Some New Insights into Marine Fouling. World Super Yacht. 1: 34-39 pp.

CAPRARI, J. y C. LECOT. 2001. El control de bivalvos invasores Limnoperna fortunei (Dunker, 1857) en la Central Hidroeléctrica Yacyretá mediante pinturas. Actas Seminario Internacional sobre Gestión Ambiental e Hidroelectricidad, Salto Grande. 24 p.

CASTELLANOS, L. 2007. Metabólitos mayoritarios de las esponjas excavadoras Cliona delitrix y Cliona tenuis, y su papel

como aleloquimicos en la competencia por espacio con corales hermatípicos. Tesis de doctorado en Ciencias Química. Universidad Nacional de Colombia, Facultad de Ciencias, Posgrado en Química. 211 p.

CAYCEDO, I.E., 1978. Holothurioidea (Echinodermata) de aguas someras en la costa norte de Colombia. An. Inst. Inv. Mar. Punta Betín. 10: 149–198 pp.

CHAMBERS, L.D., K.R. STOKES, F.C. WALSH, y R.J. WOOD. 2006. Modern approaches to marine antifouling coatings. Surf. Coat. Tech. 201 (6), 3642–3652 pp.

CLARE, A. 1996. Marine natural product antifoulants: status and potential. Biofouling. 9: 211-229 pp.

CLARE, A.S., D. RITTSCHOF, D.J. GERHART y J. MAKI. 1992. Molecular approaches to nontoxic antifouling. Invert. Reprod. Dev. 22: 67-76 pp.

CLAVICO, E.; MURICY, G.; DA GAMA, B.; BATISTA, D.; VENTURA, C. and PEREIRA, R. (2006). Ecological roles of natural products from the marine sponge Geodia corticostylifera. Mar. Biol., 148, 479- 488.


SCHULZ, M.L. SCHWARTZ and A. VALDES. 2005. Photographic identi!cation guide to some common marine invertebrates of Bocas Del Toro, Panama. Caribb. J. Sci. 41 (3): 638–707 pp.

da GAMA. A., R. PEREIRA, A. CARVALHO, R. COUTINHO y Y. YONESHIGUEVALENTIN. 2002. The effect of seaweed secondary metabloites on biofouling. Biofouling. 18: 13-20 pp.

DAVIS, A. and A. WRIGHT. 1989. Interspecific differences in fouling of two congeneric ascidians (Eudistoma olivaceum and E.

capsulatum). Is surface acidity an effective defense? Mar. Biol. 102: 491-497 pp.

DESQUEYROUX-FAÚNDEZ, R. y C. VALENTINE. 2002a. Family Petrosiidae, en: Hooper, J.N.A. y R.W.M. van Soest (eds.),

Systema Porifera: a guide to the classi!cation of sponges. Kluwer Academic/Plenum Publishers, New York. 906–917 pp.

DESQUEYROUX-FAÚNDEZ, R. y C. VALENTINE. 2002b. Family Phloeodictyidae, en: Hooper, J.N.A. y

R.W.M. van Soest (eds.), Systema Porifera: a guide to the classi!cation of sponges. Kluwer Academic/Plenum Publishers, New York. 893–905 pp.


B.; MCCLINTOCK, J. (1997). Isolation, structure elucidation, and biological activity of the steroid oligoglycosides and

polyhydroxysteroids from the Antarctic starfish Acodontaster conspicuous. J. Nat. Prod., 60, 959-966.

FAULKNER, D. (2002). Marine natural products. Nat. Prod. Rep., 19, 1-48.


y M.M. CESTARI. 2004. Mutagenic effects of tributyltin and inorganic lead (Pb II) on the fish H. malabaricus as evaluated using the comet assay and the piscine micronucleus and chromosome aberration tests. Genet. Mol. Biol. 27: 103–107 pp.

GIÚDICE, C., J. BENITEZ, V. RASCIO y M. PRESTA. 1980. Study of variables which affect dispersion of antifouling paints in ball mills. Journal Oil Colour Chemistry Association. 63 (4): 153 p.

GONSALVES, C. (1997). E%ect of holothurian and zoanthid extract on growth of some

bacterial and diatom species.. J. Ind. Mar. Sci., 26, 376-379.

HARDER, T. 2009. Marine epibiosis: concepts, ecological consequences and host defence. En:

Marine and industrial biofouling. Springer series on biofilms. 4 (II): 219-231 pp.



Introduction to the chemical ecology of marine natural products, en: McClintock, J.B. y B.J. Baker (eds.). Marine Chemical Ecology. CRC Marine Science Series. 3–69 pp.

HAUG, T.; KJUUL, A.; STYRVOLD, O.; SANDSDALEN, E.; OLSEN, M. and STENSVÅG, K. (2002). Antibacterial activity in Strongylocentrotus droebachiensis (Echinoidea), Cucumaria frondosa (Holothuroidea), and Asterias rubens (Asteroidea). J. Invert. Pathol. 81, 94-102.


A.; VAGIAS, C. and ROUSSIS, V. (2005). Inhibitory e%ects of Mediterranean sponge extracts and metabolites on larval settlement of the barnacle Balanus amphitrite. Mar. Biotechnol., 7, 297-305.

HENDLER, G., J.E. MILLER, D.L. PAWSON and P.M. KIER. 1995. Sea stars sea urchins

and allies: Echinoderms of Florida and the Caribbean. Smithsonian Institution, Washington. 392 p.

HOOPER, J.N.A., 2002. Family Desmoxyidae, en: Hooper, J.N.A. y R.W.M. van Soest (eds.), Systema Porifera: a guide to the classi!cation of sponges. Kluwer Academic/Plenum Publishers, New York. 755–772 pp.

HOOPER, J.N.A. y R.W.M. VAN SOEST. 2002. Systema Porifera: a guide to the classi!cation of sponges: Volume 1: Introductions and Demospongiae. Springer. 1810 p.


ZHANG (2009). Antifungal active triterpene glycosides from sea cucumber Holothuria scabra. Acta Pharmaceutica Sinica, 44 (6), 620-624.

IMO - International Maritime Organization, 2002. Antifouling Systems. Londres. 31 p.

JHA R.K. Y X. ZI-RONG. 2004, Biomedical compounds from marine organisms. Marin Drugs. 2: 123-146 pp.

KONSTANTINOU, I. and T. ALBANIS. 2004. Worldwide occurrence and e%ects of antifouling paint booster biocides in the aquatic

environment. Environment International, 30: 235-248 pp.

LEHNERT, H. y R.W.M. VAN SOEST. 1996. North Jamaican deep fore-reef sponges. Beaufortia. 46 (4): 53–81 pp.

LEWIS, J.B., 1960. "e fauna of rocky shores of Barbados, West Indies. Can. J. Zoolog. 38: 391–435 pp.

MARTÍNEZ, I., M. FERRER, A. HERNANDO, R. FERNÁNDEZ-ALBA, F. MARCE y D. BARCELÓ. 2001. Occurrence of antifouling

biocides in the Spanish Mediterranean marine environment. Environ. Technol. 2: 543-553 pp.

MILLE, S.R. 2008. Invertebrados. Instituto Politécnico Nacional, México. 662 p.

MILOSLAVICH, P., J.M. DÍAZ, E. KLEIN, J.J. ALVARADO, C. DÍAZ, J. GOBIN, E. ESCOBAR-BRIONES, J.J. CRUZ-MOTTA, E. WEIL, J. CORTÉS, A.C. BASTIDAS, R. ROBERTSON, F. ZAPATA, A. MARTÍN, J. CASTILLO, A. KAZANDJIAN y M. ORTIZ. 2010. Marine biodiversity in the Caribbean: Regional estimates and distribution patterns. PloS ONE. 5 (8): 1–25 pp.

MOSHAKE, S.; GARG, A.; ANIL, A. AND WAGH, A. (1994). Growth inhibition of periphytic diatoms of methanol extract of sponges and holothurians. Ind. J. Mar Sci., 23, 57-58.

OMAE, I. 2003. General aspects of tin-free antifouling paints. Chem. Rev. 103: 3431- 3448 pp.

PAWLIK, J. 1992. Chemical ecology of the settlement of benthic marine invertebrates. Oceanogr. Mar. Biol. Annu. Rev. 30: 548-551 pp.

PAWLIK, J.R. 2011. "e chemical ecology of sponges on Caribbean reefs: Natural products shape natural systems. BioScience. 61 (11): 888-898 pp.

PEREIRA, W., T. WADE, F. HOSTETTLER y F. PARCHASO. 1999. Accumulation of butyltins in sediments and lipid tissues of the Asian clam, Potamocorbula amurensis, near mare island naval shipyard, San Francisco Bay. Mar. Pollut. Bull., 38: 1005-1010 pp.

POMPONI, S.A. 1999. "e bioprocess– technological potential of the sea. Journal of Biotechnology. 70: 5-13 pp.

RAILKIN, A.I., 2003. Marine Biofouling: Colonization Processes and Defenses, primera edición. CRC Press. 303 p.

RAO, D. J. WEBB, C. HOLSTROM, R. CASE, A. LOW, P. STEINBERG y S. KJELLEBERG. 2007. Low densities of epiphytic bacteria from the marine alga Ulva australis inhibit settlement of fouling organisms. Appl. Environ. Microbiol. 73: 7844-7852 pp.

RASCIO, V., W. BRUZZONI, R. BASTIDA y E. ROZADOS. 1977. Protección de super!cies metálicas. Serie III - Manuales Cientí!cos, Nº 1, LEMIT. 454 p.

RASCIO, V., C. GIÚDICE y B. DEL AMO. 1988. Research and development of soluble matrix antifouling paints for ships, offshore platforms, and power stations. A review. Corros. Rev. 8 (1-2): 87-153 pp.

REITSEMA, T. 2008. Antifouling Biocides in Perth Coastal Waters: A Snapshot at selected areas of vessel activity. Water science technical series. Report nº WST 1. 48 p.

THAKUR and ANIL, (2000). Antibacterial activity of the sponge Ircinia ramosa: Importance of its surface-associated bacteria.

TSOUKATOU, M.; MARÉCHAL, J.; HELLIO, C.; NOVAKOVIC, I.; TUFEGDZIC, S.; SLADIC, D.; GASIC, M.; CLARE, A.; VAGIAS, C. and ROUSSIS, V. (2007). Evaluation of the activity of the sponge metabolites avarol and avarone and their synthetic derivatives against fouling micro- and macroorganisms. Molecules, 12, 1022-1034. J. Chem. Ecol.., 26, 57-71.

VILLASIN, J. and POMORY, C. (2000). Antibacterial activity of extracts from the body wall of Parastichopus parvimensis

(Echinodermata: Holothuroidea). Fish. Shellfish Immunol., 10, 465-467.

VOULVOULIS, N., M. SCRIMSHAW y J. LESTER. 1999. Appl. Organometall. Chem. 13: 135-143 pp.

VOULVOULIS, N., M. SCRIMSHAW y J. LESTER. 2000. Occurrence of four biocides utilised in antifouling paints, as alternatives

to organotin compounds, in waters and sediments of a commercial estuary in the UK. Mar. Poll. Bull. 40: 938-946 pp.

VOULVOULIS, N., M. SCRIMSHAW y J. LESTER. 2002. Comparative environmental assessment of biocides used in antifouling

paints. Chemosphere, 47: 789-795 pp.

VROLIJK, N., N. TARGETT, R. BAIER, R. y A. MEYER. 1990. Surface characterization of two gorgonian coral species: implications for a natural antifouling defense. Biofouling. 2: 39- 54 pp.

WAHL, M. 1989. Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar. Ecol- Prog. Ser. 58 (1): 175–189 pp.

WU, J., P.J. MENG, M.Y. LIU, Y.W. CHIU y L.L. LIU. 2010. A high incidence of imposex in pomacea apple snails in Taiwan: A Decade after Triphenyltin Was Banned. Zool. Stud. 49 (1): 85–93 pp.

YEBRA, D.M., S. KIIL y K. DAM-JOHANSEN. 2004. Antifouling technology: past, present and future steps towards e#cient and environmentally friendly antifouling coatings. Prog. Org. Coat. 50 (2): 75–104 pp.

ZEA, S. 1987. Esponjas del Caribe colombiano., Primera edición. Catalogo Cientí!co, Bogotá. 286 p.

Scientific and Technological Research Articles