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Abstract

A dynamic model for the motion of planing craft on the vertical plane was developed; the motions of
surge, heave, and pitch are coupled. Critical conditions that produce the inception of instability are
evaluated. The Wagner model (1932) for 2D impact is extended for section with knuckles. Planing hulls
were analyzed through the application of slender body theory. The results are compared with Tveitnes
(2001), Peterson (1997), Savitsky (1964), Troesch (1992) and Celano (1998).
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Resumen

Se desarrolla un modelo dindmico del movimiento de embarcaciones de planeo en el plano vertical
acoplando los movimientos de avance y levantamiento, cabeceo. Se determinan las condiciones criticas
que dan origen de la inestabilidad. El modelo de Wagner (1932) para el impacto 2D es extendido para
secciones con codillos. Mediante la aplicacién de la teoria de cuerpos esbeltos se analizan las embarcaciones
de planeo. Los resultados obtenidos son comparados con Tveitnes (2001), Peterson (1997), Savitsky
(1964), Troesch (1992), Celano (1998).
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Introduction

Wagner (1932) developed an analytic model to
predict pressure distribution in the impact with
symmetry entry. Fig. 1 shows a wedge section with
symmetry entry, where & is the beam of the section,
d is the keel-knuckle distance, f is the dead rise
angle, y and z are the horizontal and vertical axis,
respectively.

Fig. 1. Wedge section impact with symmetry entry
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For this kind of section, pressure distribution is
evaluated as:
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Where p is the fluid density, P is the pressure, ¢
is the wetted half-beam, w is the vertical velocity,
¢ is the time variation of the half-beam, which is
evaluated as:

‘= 2 tanf (2)
2D Impact

The Wagner model (1932) does not work after the
flow separation from the knuckle, for this case the
boundary condition P=0 on y=b/2 is applied, thus:
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When the section is moved with constant velocity
w =0, replacing

o L3l
e )
e

The variables are separated and integrated, the
virtual half-beam wetted after the flow separation
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Where c is the half-beam in the instant, 7 and 7 is
the time when the flow is on the knuckle.

is:
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2D Dynamic Impact

The total force in the section is:

fz,:fHD+fH;+fu (6)

Where fHD is the hydrodynamic force, st is the
hydrostatic force and f is the sectional drag force.
By integrating equation 1 the hydrodynamic force
in the section is obtained:
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Fig. 2. Forces in the section
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Fig. 2 shows the forced in the section. The
equilibrium of forces in the section is:

Zfz :wmﬂ+f1;D +st+fu —mg = —mw (11)

Replacing

£ = in + fust 1, (12)
The hydrostatic force is calculated as:

fus = P (13)

Where g is the gravity constant and A is the
immersed area, the drag force is calculated as:

1
f,, = TPCa(zyl)wz

(14)

Where C, is the sectional drag coefhicient, which
takes values of:

(15)

Cd=[ wz20,C,=05 l

w<0,Cd= —-1.0

The acceleration in the section is:

P (16)
m+ m,
2D Impact Results
The sectional force coefficient is defined as:
1.
¢ = 1
T (17)
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Figs. 3, 4, and 5 show the results of force coefficient
variation with immersion for different wedge
sections; the results are compared with Tveitnes
(2001) with a good agreement, the peak of force is
over predicted.

Fig. 3. C, vs. z/d, B=10°
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Fig. 4. C vs. z/d, B=20°

Actual, Beta=20°

Tveitnes, Beta=20°

10

\
VAR

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Zld

Fig. 5. C, vs. z/d, B=30°

l l
Actual, Beta=30°

Tveitnes, Beta=30°

I R N -
DS

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Zld

Ship Science & Technology - Vol. 8 - n.° 15 - (35-43) July 2014 - Cartagena (Colombia) 37



Algarin, Tascén

Figs. 6, 7, 8, 9, 10, and 11 show the results of
acceleration with free drop; the section has the
following properties: & = 2 ft, f = 20°, width = 8
ft. The initial height was varied by 2, 4, and 6 ft,

Fig. 6. Acceleration vs. time, h = 2 ft, m = 269 1b
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Fig. 7. Acceleration vs time, h = 4ft, m = 2691b
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Fig. 8. Acceleration vs time, h = 6ft, m = 2691b
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while the mass of the wedge took values of 269
and 641Ib. The results obtained are compared with
Peterson (1997) with good agreement.
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Fig. 9. Acceleration vs. time, h = 2 ft, m = 641 lb
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Fig. 10. Acceleration vs time, h =4 ft, m =641 1b
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Fig. 11. Acceleration vs. time, h =6 ft, m = 641 1b
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Dynamic Model of Motion on the
Vertical Plane of Planing Boats

Fig. 12 shows a planing boat on calm water, D
is the draft in the transom, L, i and V. 4 Are the
horizontal and vertical position of the gravity
center, @ is the trim angle, zZ, is the height of the

center of gravity with respect to the water line, x
and z are fixed coordinates in the boat.

D= LcdgsinH +I{dgc059 ~ 2y (18)
1, =D —(xsinf + Z cos0) (19)

Replacing

7'(‘) = 7(X7Lm,g)sin9 -‘,—(I{dg*ZI)COSH 7zcdg (20)

Ifcos@ =~ 1

Ty =—(—-L,)sin0 +(I{dg* )=z,

(21)

The velocity impact of each section is evaluated as:

DT, dT dT,

0 oyt (22)
Dt dt dx
w=—(x *LMg) cos@ (§) — ,ém,g
. 3)
+ U |[sin@+ e
By simplification
w=- (.X' o Lm’g) (6) B z‘cdg
' dz, (24)
+ U |sin0 + e
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Where 0§ is the pitch velocity, £ is the vertical
velocity in the ¢g. The acceleration impact of each
section is evaluated as:

_ Dw_ dw o dw
Dr  dr dx

(25)

w=—(x—L,) ()~ £, +2Ucos0 (0)

(26)
. dz, ) 4’z
+U Sln9+x)*U dxz
By simplification
w=—(x~L,)0%,+2U0
. . le ) dzzl (27)
+ U |sin0+ e e

Calculation of Forces in the hull

Fig. 13 (pag. 30) shows the forces in the hull, where
T is the thrust, F, is the normal hydrodynamic
force, M, is the hydrodynamic moment, mg is the
weight, F is the viscous drag, ¢ is the angle of the
propulsion shaft,  is the perpendicular distance
between F and ¢g, 4, is the perpendicular distance
between 7'and cg.

The normal force to the keel is evaluated as:

g - | C. () fi (28)

Where /is the length of the boat and ¢ (x) is the
suction pressure coeflicient of the transom, which
is calculated as:

Fig. 12. Geometry properties in planing hull in calm water
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Fig. 13. Forces in the planing hull
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By substitution
Where .
MHD = (MZSing)U_Mzézdg
1
M = (x)m, dx 33 S Mb M
i ,[Ofn’””ﬂ (33) +2MUO - MO + M,
!
M, = [ oL )e om (34) Where

By substitution

E =(Msin0)U-M,5 , +2MU0- M0 +F (35)

Where

P4

d2
dxz

ﬁ;z J‘;*U2 L m dx +J; fx (36)

R ! d’z
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l 3
+ j L )e, [

The viscous drag force is calculated as:

f = %pcaAU2
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C.is the friction coeficient, A is the wetted area of
the hull. The equilibrium of forces in X is:

D E = Tein(0+0) - Fsin® (44)

~F cos0 =M3'ém,g

By replacing

Tcos(0+0)— (}17\,)+ ZMIUé)sinH —F sin®
(45)

=M+ M, sin29)U
~ (M, sin0)z,, ~ (M,sin0)0

The equilibrium of forces in Z is:

ZFZ = FNCOSH*P;Sine +7sin(0+0)

—Myg :Mécdg

By replacing

(E,+ 2MU0) cos 0 —F sin0 + Tsin (6 + 0)
_Mg
=~ (M,sinf cos 0) U
+ M+ M cosH)ém,g

(47)

+ (M, cos G)é

The equilibrium of momentum in y is:

Z%:MHD_dvE/J’_dZT: [}{ye (48)
By replacing
My dE 4T
=-— (Mzsine) U+ j\lzém,g (49)

+ (lyﬁ M3)0

The equations of motion are coupled obtaining the
following expression:

Analysis of Dynamic Stability of Planing Craft on the Vertical Plane

M+ M,sin* ¢ M—Msind  M,sing itdg
—Msin@ cos 0 M+M,cos  M,cost) z,
cdg

_Mzsinﬁ ]V[2 1)7+ M3 0

2 (50)

Tcos (0+0) — (B + 2MUB)sin6 — F sin0

= | (B + 2M,U0) cos0 — F sin0 + Tsin(0 + &) ~ Mg

:MHD - dvﬂE/ +drT

When the velocity of the boat is constant:

écdg
0

(B + 2MUB) cosO —F sin0 + Tsin(6+ 5)—Mgl
:MI-’[D B dvﬂF;) + a’tT

M+M1c059 ]chosﬁ
M [ +M
W 3

2

(51)

Results of the Application on Planing Boats

For analysis, the following parameters are defined:

(52)

(53)

pB’

£

L lpUsz (54)
2
Lk+L[

T (55)

Where ¢, ¢,, ¢, are the coefficients of velocity,
load, and lift; A is the mean wetted length, M is
the displacement, B is the beam of the boat, ,
and L_are the wetted length of the keel and the
wetted length of the chine. Figs. 14, 15, 16, and
17 show the results of forces on steady condition
for a constant forward velocity, the boat has the
following properties: V. W/B=0.65,L,/B=1470=
4°and 4 = 3. 57, and 7, are the vertical elevation and
rotation of the ¢g from the equilibrium position.
The results are compared with Troesch (1992) and
Savitsky (1964).
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Fig. 14. F, vs. n,/B

Fig. 17. M, vs. /B
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Figs. 18 and 19 show the critical condition that
produces the inception of instability in the vertical
plane for boats with # = 10° and f = 20°; the results
are compared with Celano (1998) and Savitsky
(1964). The criteria for the instability is the pitch
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amplitude oscillation, N, > 1° The boat has the
following conditions: C, = 0.394, kyy/B = 1.25
V. /B=04and /B =5, where kyy is the gyration
ra(fius. The value of Ledg was changed to find the

critical condition for each configuration.
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Conclusions

The Wagner model (1932) was extended for section
with knuckle; force and pressure distribution
were evaluated after the flow separation from the
knuckle. The 2D dynamic impact was simulated;
the results were compared with Peterson (1997)
obtaining good agreement. The 2D impact was
applied to a planing boat by the slender body
theory and a dynamic model for planing hull
in calm water was developed. The lift force and
trim moment were calculated for ships in steady
condition; the results obtained were compared
with Savitsky (1964) and Troesch (1992). Critical
conditions that cause the inception of porpoising
were determined; the results are compared with
Savitsky (1964) and Celano (1998) with good

agr cement.
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